

Tools for Documenting the Establishment of Microbial Biocontrol Agents

David M. Weller & Linda S. Thomashow

USDA-ARS
Root Disease and Biological Control
Research Unit
Washington State University
Pullman, Washington

Biological Control of Plant Diseases

Approaches

Indigenous organisms: Natural microbially-based defense

Suppressive Soils pathogen does not establish or persist

- establishes but causes little or no damage
- establishes, causes disease but then declines in severity
- pathogen may persist in the soil (Baker and Cook, 1974)
- Introduced microbial agents

Many organisms have been studied for biocontrol activity but research has focused on *Pseudomonas*, *Bacillus* & *Trichoderma*.

Characteristics of Biocontrol Agents

Bacillus

- bacterium of choice for commercial BCAs
- easily mass produced
- ♦ easily formulated; forms a dormant, resistant spore

Trichoderma

- fungus of choice for commercial BCAs
- ♦ easily mass produced
- ♦ sporulates profusely, easily formulated
- ♦ resistant to natural and synthetic chemicals

Pseudomonas

- organism of choice for fundamental studies of biocontrol
- ♦ easily mass produced, but harder to formulate; no spores
- ♦ few commercial BCAs

Tracking Biocontrol Agents

Foliar diseases

Postharvest diseases

Soil and rhizosphere: most complex environments in which BCAs must establish and function

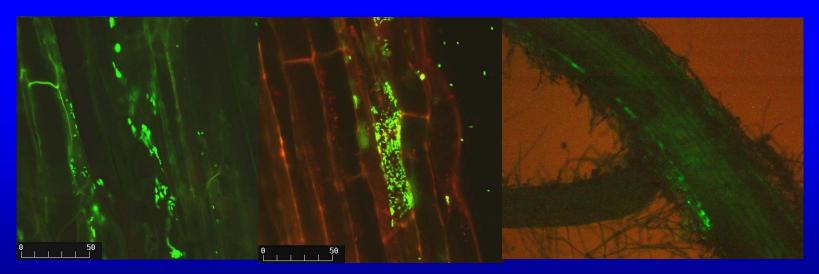
Tracking BCAs: complicated by the microbial milieu in the rhizosphere

Characteristics of Root Colonization by Bacterial BCAs

- BCAs applied to seeds or planting material spread throughout a root system but cells are not uniformly distributed along roots (Bahme & Schroth, 1987; Bull et al., 1991; Loper et al., 1984).
- Densities of BCAs are greatest after planting, decline throughout the growing season or decline & stabilize; populations do not exceed 5x10⁸ CFU g⁻¹ root + rhizosphere soil (Bakker et al., 1986; Kluepfel, 1993; Mahaffee et al., 1997; Steddom et al., 2002; Weller, 1983).
- The proportion of the heterotrophic bacterial population comprised by a BCA is greatest soon after planting and decreases throughout the growing season (Halverson et al., 1993; Juhnke et al., 1989; Weller, 1983).

Seeking Sensitivity and Specificity

- Direct Microscopy: (lacks specificity)
 - Traditional SEM: extensive sample preparation
 Sugar beet seed colonization B. subtilis & P. putida (Fukui et al., 1994)
 - Distribution of P. fluorescens on pea roots (Dandurand et al., 1997)
 - ◆ Environmental Scanning Electron Microscopy
 - Water remains liquid and specimens are hydrated; no preparation
- Molecular Stains: staining and tagging systems & advanced fluorescence microscopy; detection of single cells in complex environments; greater sensitivity
 - ♦ General Cell Stains
 - Epifluorescence microscopy & DNA staining: acridine orange (DeLeo et al., 1997); SYBR Green II (Weinbauer et al., 1998)
 - Fluorescent Brighteners: staining of fungi (Thrane et al., 1999; Eickhorst & Tippkötter, 2008; Harris et al., 2002)


Seeking Sensitivity and Specificity

Specific Cell Stains

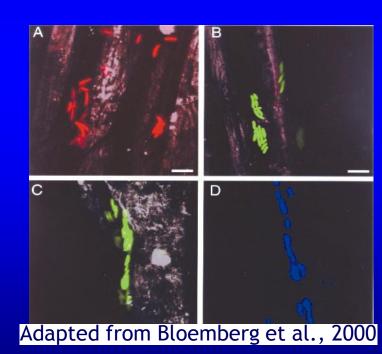
- Confocal Laser Scanning Microscopy (CLSM) with Strain-Specific Fluorescent Antibody Staining (enhanced sensitivity and specificity)
 - High resolution 3-D images of structure and composition of microbial communities
 - Early studies: A. brasilense and P. fluorescens colonizing wheat/barley roots (Schloter et al., 1993; Hansen et al., 1997; Kirchhof et al., 1997)
- CLSM with Fluorescence In Situ Hybridization (FISH) (targeting rRNA & mRNA)
 - Numerous studies of root colonization (Assmus et al., 1995, 1997; Watt et al., 2006; Santaella et al., 2008)
 - FISH showed different colonization patterns for Salmonella enterica and Listeria spp. on barley roots (Kutter et al., 2005)

Seeking Sensitivity and Specificity

- Reporter Strains: single strains carrying fluorescence marker genes
 - Non-Specific reporter: lux of gfp genes controlled by a constitutive promoter (bioluminescence/ green fluorescent protein)
 - CLSM used to track GFP mutants of *P. chlororaphis* on barley seed (Tombolini et al., 1999); *P. fluorescens* on roots of barley (Normander et al., 1999), tomato (Gotz et al., 2006), avocado (Pliego et al., 2008), olive (Prieto & Mercado-Blanco, 2008), tomato (Chin-A-Woeng et al., 1997; Bloemberg et al., 2000)

CFLM CFLM EFM

Wheat roots colonized by gfp-tagged P. fluorescens Q8r1-96 (10 days PI)


Tools for Tracking

Simultaneous imaging of *Pseudomonas fluorescens* WCS365 expressing autofluorescent proteins in the rhizosphere.

• GFP - green fluorescent protein (isolated from Aequorea victoria)

Derivatives of GFP

- <u>ECFP</u> enhanced cyan fluorescent protein; expressing bacteria appear red (A)
- <u>EGFP</u> enhanced green fluorescent protein; expressing bacteria appear green (B)
- <u>EYFP</u> enhanced yellow fluorescent protein; expressing bacteria appear green (C)
- <u>RFP</u> red fluorescent protein; expressing bacteria appear blue (D) (isolated from *Discosoma* spp.)

Reporter Strains:

- Semi-Specific reporter: responds to exposure to particular conditions (high temperature; ROS etc.)
- Specific reporter: responds to presence (Jager et al., 1999) or absence (Koch et al., 2001) of specific compounds or elements

T3SS genes of Q8r1-96 expressed in the wheat rhizosphere

X-ray film image of roots colonized by Q8r1-96 tagged by a mini-Tn7 transposon with the *rspJ* promoter fused to luciferase genes (Mavrodi et al., in press)

Well-Studied Groups of BCAs: PCA- & DAPG-Producing *Pseudomonas* spp.

Phenazine-1-carboxylic acid (PCA)

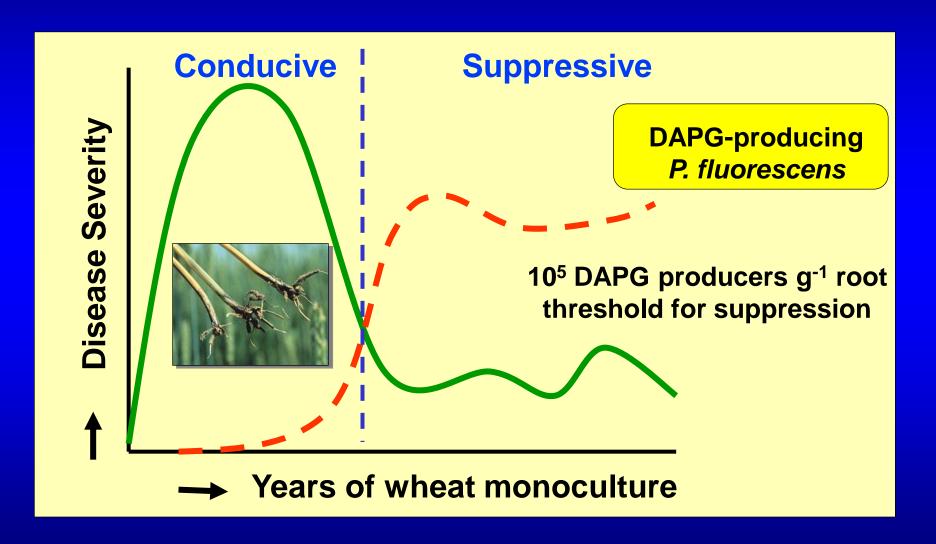
2,4-Diacetylphloroglucinol (DAPG)

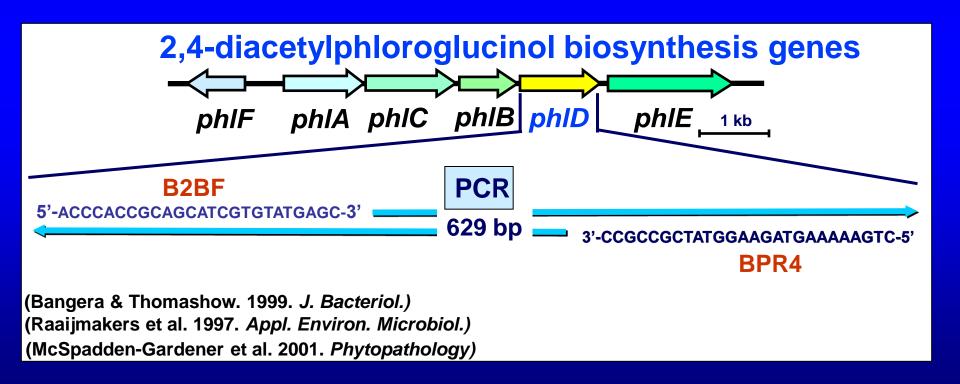
P. fluorescens 2-79

P. fluorescens Q8r1-96

Take-all

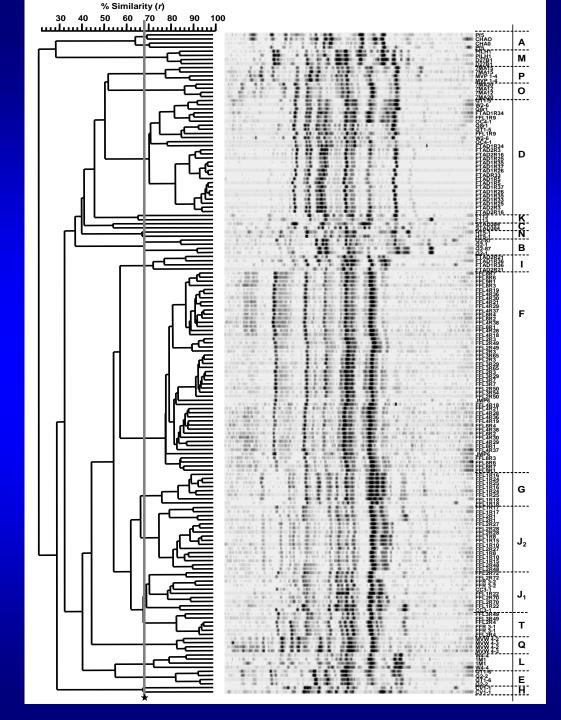
Gaeumannomyces graminis var. tritici





Take-All Decline (TAD)

Detection of DAPG-Producing Fluorescent *Pseudomonas* spp. (phlD⁺)


phlD encodes for a polyketide synthase; genetic marker
phlD specific probes and primers used in combination with
colony hybridization and PCR to detect DAPG producers
All DAPG producers contain phlD

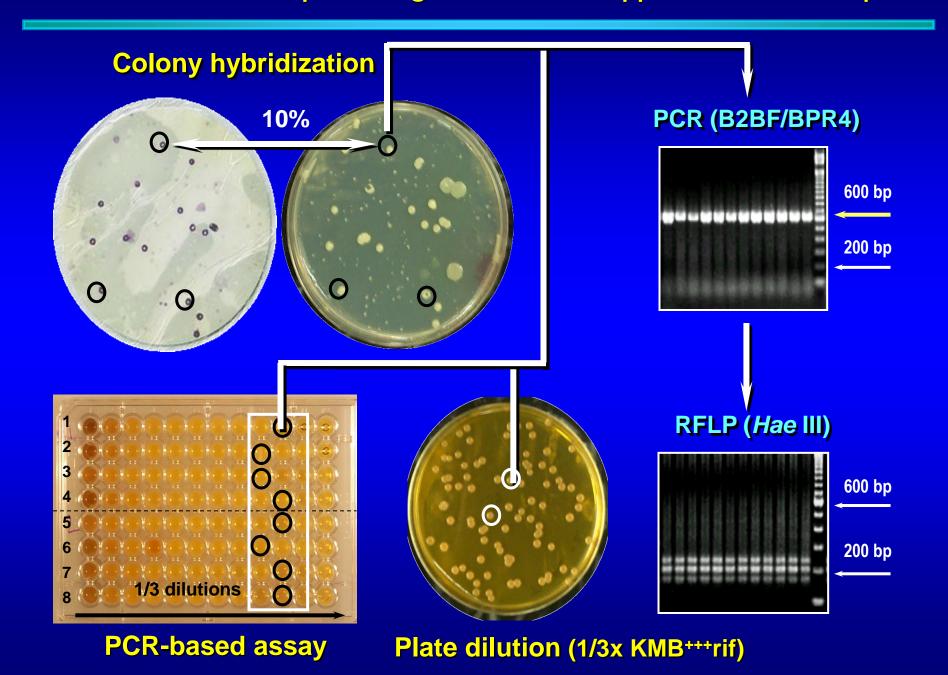
Diversity of DAPG Producers

- phlD-RFLP
- Rep-PCR (BOXA1R primer)
- 22 Genotypes (A-T, PfY, PfZ)
- D-genotype dominant in Washington TAD soils

Landa et al., 2005 Raaijmakers & Weller, 2001 Landa et al., 2002 McSpadden Gardener et al., 2000

Seeking Sensitivity and Specificity

Culture-Based Methods

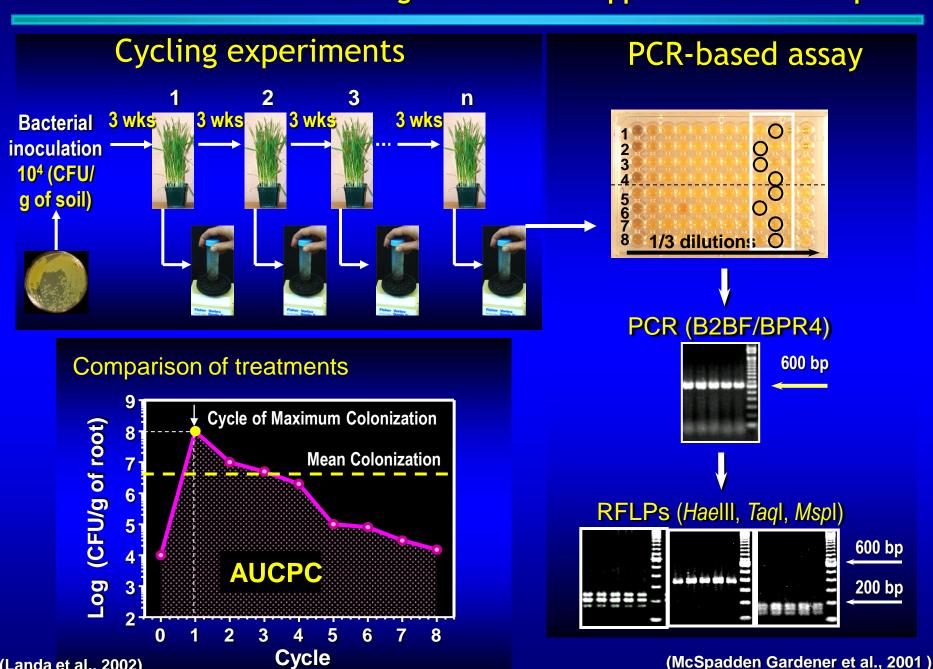

Selective or Semi-Selective Media

Pseudomonas (Sands & Rovira, 1970; Simon & Ridge, 1974; Grant & Holt, 1977)

- **♦** Antibiotic Resistant Strains
 - Most common approach; rifampicin resistant derivatives (Weller, 1984; Mahaffee et al., 1997)
- ◆ Immunofluorescent Colony Staining (antigenic specificity)
 - Uses strain-specific antibodies; cells remain viable; highly sensitive (Mahaffee et al., 1997; Van der Wolf et al., 1995, 2000)
- ◆ Colony Hybridization (gene-based specificity)
 - Bacterial colonies are replica-plated onto membranes and their DNA is hybridized with a gene-specific probe
 - Identification of DAPG-producing P. fluorescens (Raaijmakers et al., 1997)

- Culture-Based Methods:
- ♦ PCR-Based Dilution-Endpoint Method:
 - three fold dilution in microtiter plates with selective media followed by PCR with specific probes (McSpadden Gardener et al., 2001; Landa et al., 2002)
- Culture-Independent Quantitative PCR: (Rezzonico et al., 2003)
 - Mavrodi et al., (2007) used a real-time PCR SYBR green assay to quantify different genotypes of DAPG-producing *P. fluorescens* on the roots of wheat.

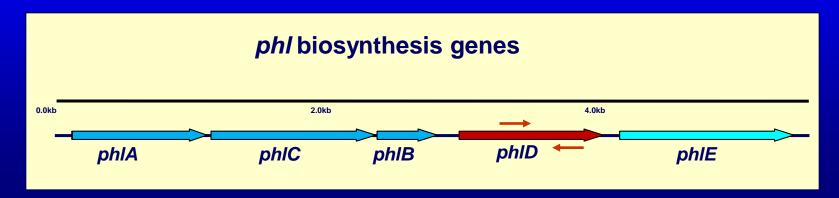
Identification of DAPG-producing Pseudomonas spp. from the rhizosphere


Colony Hybridization & PCR vs. Antibiotic Resistance

colony hybridization followed by PCR

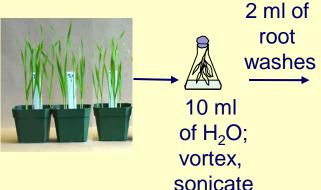
(Landa et al., 2002)

Identification of DAPG-Producing Pseudomonas spp. from the Rhizosphere


(Landa et al., 2002)

- Culture-Based Methods:
- ◆ PCR-Based Dilution-Endpoint Method:
 - three fold dilution in microtiter plates with selective media followed by PCR with specific probes (McSpadden Gardener et al., 2001; Landa et al., 2002)
- Culture-Independent Quantitative PCR: (Rezzonico et al., 2003)
 - Mavrodi et al., (2007) used a real-time PCR SYBR green assay to quantify different genotypes of DAPG-producing *P. fluorescens* on the roots of wheat.

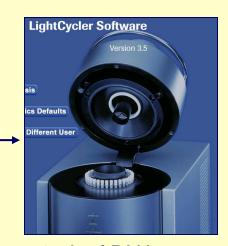
Genotype-specific phlD primers for real-time PCR


Genotype (strain)	Primers name	Primers sequence 5' to 3'	Positions	Tm ^a of primers
A (Pf-5)	A_Up	GCACGGTGGAGGTTGGC	507	66.7 C
	A_Low	GTGATCGTCACTTCCTGCAC	575	62.6 C
B (Q2-87)	B_Up	CACGCATCCCAATTGAG	477	59.4 C
	B_Low	CCGTTACCTCTTGCACC	573	58.0 C
D (Q8r1-96) D (FTAD1r34)	D_Up	AGTTGCAGGACCAGTTC	37	57.6 C
	D_Low	CATTAAAGATGTCGCACCG	148	61.9 C
I (FTAD1r36)	I_Up	GGTTCCAGGTCCAGTTG	26	56.8 C
	I_Low	CGTCAAGGACAGTGGCTTC	199	62.9 C

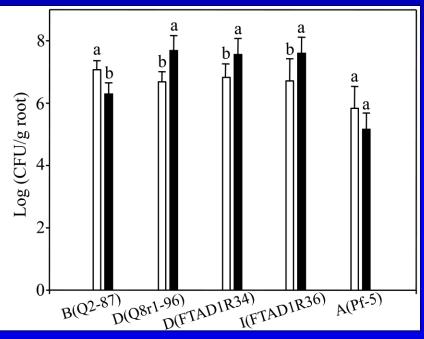
^a Oligonucleotides were designed by Oligo 6.65 Primer Analysis Software and Tm of the primers were calculated by Oligo 6.65 using the nearest-neighbor thermodynamic method.

General scheme for enumeration of introduced and indigenous bacteria in the wheat rhizosphere by real-time PCR

UltraClean[™] Soil DNA Isolation kit



Modified alternative protocol for wet soil samples


50 μL of DNA per sample

Real-time PCR



2 μL of DNA are used per PCR reaction

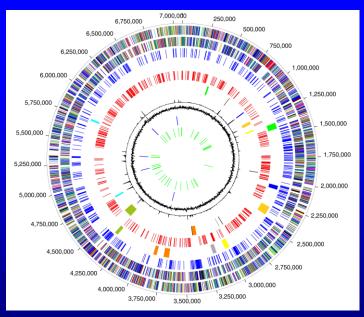
Comparison of population levels of DAPG-producing Pseudomonas spp. in the rhizosphere of wheat detected by real-time PCR and TD endpoint assay

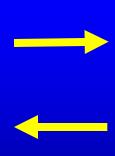
Terminal dilution endpoint assay real time PCR

Regression analysis of population densities detected by real-time PCR and by a previously described TD endpoint assay indicated a significant linear relationship (P=0.0016, r²=0.2). Each symbol represents the population of bacteria detected on roots plus adhering rhizosphere soil from a single seedling. Mavrodi et al., 2007

Comparison of real-time PCR and TD endpoint assay

Real-time PCR


- Culture independent;
- Samples consist of purified DNA;
- Allows detection of dominant and subdominant genotypes;
- Allows detection of indigenous bacteria (i.e. those not tagged with antibiotic resistance);
- Detection limit on average is log 4 -5 per rhizosphere;
- Cost per reaction ~ \$4.60
 (including cost of soil DNA extraction, and not including cost of equipment and service contract);
- Turnaround time is 2 days.


TD endpoint assay

- Culture dependent (inhibition may occur in mixed cultures during incubation step);
- Samples consist of frozen cell suspensions;
- Allows easy detection of only dominant genotypes;
- Works best for strains tagged with antibiotic resistance;
- Detection limit is log 3.3 CFU/g root;
- Cost per reaction ~ \$3.50;
- Turnaround time is 5 days.

Thoughts for the Future

- Solving problems that are barriers to biocontrol reaching its full potential as an integral part of sustainable agriculture will require multi-disciplinary research focusing on the biocontrol process at all levels, from the genome to ecosystem scale.
- Developing tools to track the establishment and fate of BCAs will continue to be an important component of the multi-disciplinary research effort.

